The embryonic preoptic area is a novel source of cortical GABAergic interneurons.
نویسندگان
چکیده
GABA-containing (GABAergic) interneurons play an important role in the function of the cerebral cortex. Through mostly inhibitory mechanisms, interneurons control hyperexcitability and synchronize and shape the spatiotemporal dynamics of cortical activity underlying various brain functions. Studies over the past 10 years have demonstrated that, in most mammals, interneurons originate during development from the subcortical telencephalon--the subpallium--and reach the cerebral cortex through tangential migration. Until now, interneurons have been demonstrated to derive exclusively from two subpallial regions, the medial ganglionic eminence and the caudal ganglionic eminence. Here, we show that another subpallial structure, the preoptic area, is a novel source of cortical GABAergic interneurons in the mouse. In utero labeling and genetic lineage-tracing experiments demonstrate that neurons born in this region migrate to the neocortex and hippocampus, where they differentiate into a distinct population of GABAergic interneurons with relatively uniform neurochemical, morphological, and electrophysiological properties.
منابع مشابه
A wide diversity of cortical GABAergic interneurons derives from the embryonic preoptic area.
GABA-containing (GABAergic) interneurons comprise a very heterogeneous group of cells that are crucial for cortical function. Different classes of interneurons specialize in targeting specific subcellular domains of excitatory pyramidal cells or other interneurons, which provides cortical circuits with an enormous capability for information processing. As in other regions of the CNS, cortical i...
متن کاملMultiple embryonic origins of nitric oxide synthase-expressing GABAergic neurons of the neocortex
CORTICAL GABAERGIC INTERNEURONS IN RODENTS ORIGINATE IN THREE SUBCORTICAL REGIONS: the medial ganglionic eminence (MGE), the lateral/caudal ganglionic eminence (LGE/CGE), and the preoptic area (POA). Each of these neuroepithelial precursor domains contributes different interneuron subtypes to the cortex. Neuronal NOS (nNOS)-expressing neurons represent a heterogenous population of cortical inte...
متن کاملNuclear receptor COUP-TFII-expressing neocortical interneurons are derived from the medial and lateral/caudal ganglionic eminence and define specific subsets of mature interneurons.
Neocortical GABAergic interneurons in rodents originate from subpallial progenitor zones. The majority of mouse neocortical interneurons are derived from the medial and caudal ganglionic eminences (MGE and CGE, respectively) and the preoptic area (POA). It is controversial whether the lateral ganglionic eminence (LGE) also generates neocortical interneurons. Previously it was shown that the tra...
متن کاملLast but not least: cortical interneurons from caudal ganglionic eminence.
Editor's Note: These short, critical reviews of recent papers in the Journal, written exclusively by graduate students or postdoctoral fellows, are intended to summarize the important findings of the paper and provide additional insight and commentary. For more information on the format and purpose of the Journal Club, please see Review of Miyoshi et al. Mammalian cerebral cortex is composed of...
متن کاملCompromised generation of GABAergic interneurons in the brains of Vax1-/- mice.
The subcortical telencephalon is the major source of GABAergic interneurons that, during development, tangentially migrate to the cerebral cortex, where they modulate the glutamatergic excitatory action of pyramidal cells. The transcription factor Vax1, an intracellular mediator of both Shh and Fgf signaling, is expressed at high levels in the medial and lateral ganglionic eminences (MGE and LG...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 29 شماره
صفحات -
تاریخ انتشار 2009